Search results for "Small nuclear RNA"

showing 10 items of 12 documents

Arthropod 7SK RNA

2008

The 7SK small nuclear RNA (snRNA) is a key player in the regulation of polymerase (pol) II transcription. The 7SK RNA was long believed to be specific to vertebrates where it is highly conserved. Homologs in basal deuterostomes and a few lophotrochozoan species were only recently reported. On longer timescales, 7SK evolves rapidly with only few conserved sequence and structure motifs. Previous attempts to identify the Drosophila homolog thus have remained unsuccessful despite considerable efforts. Here we report on the discovery of arthropod 7SK RNAs using a novel search strategy based on pol III promoters, as well as the subsequent verification of its expression. Our results demonstrate th…

GeneticsbiologyComputational BiologyGene Expression7SK Small Nuclear RNAPrp24RNA polymerase IINon-coding RNARNA polymerase IIIConserved sequenceDrosophila melanogasterEvolutionary biologyRNA Small NuclearSequence Homology Nucleic AcidDatabases GeneticGeneticsbiology.proteinAnimalsNucleic Acid ConformationsnRNPArthropodsMolecular BiologyEcology Evolution Behavior and SystematicsSmall nuclear RNAMolecular Biology and Evolution
researchProduct

Prefoldins contribute to maintaining the levels of the spliceosome LSM2–8 complex through Hsp90 in Arabidopsis

2020

14 p.-7 fig.-2 tab.

0106 biological sciencesSpliceosomeAcademicSubjects/SCI00010RNA SplicingMutantArabidopsis01 natural sciencesChaperonin//purl.org/becyt/ford/1 [https]03 medical and health sciencesGene Expression Regulation PlantArabidopsisRNA and RNA-protein complexesGeneticsHSP90 Heat-Shock Proteins//purl.org/becyt/ford/1.6 [https]030304 developmental biologyprefoldins0303 health sciencesbiologyArabidopsis ProteinsRNA-Binding Proteinsbiology.organism_classificationHsp903. Good healthCell biologyProteostasisMultiprotein ComplexesMutationRNA splicingSpliceosomesbiology.proteinLSM2-8 complexspliceosomeSmall nuclear RNAMolecular ChaperonesProtein Binding010606 plant biology & botany
researchProduct

RNA nucleotide methylation

2011

Methylation of RNA occurs at a variety of atoms, nucleotides, sequences and tertiary structures. Strongly related to other posttranscriptional modifications, methylation of different RNA species includes tRNA, rRNA, mRNA, tmRNA, snRNA, snoRNA, miRNA, and viral RNA. Different catalytic strategies are employed for RNA methylation by a variety of RNA-methyltransferases which fall into four superfamilies. This review outlines the different functions of methyl groups in RNA, including biophysical, biochemical and metabolic stabilization of RNA, quality control, resistance to antibiotics, mRNA reading frame maintenance, deciphering of normal and altered genetic code, selenocysteine incorporation,…

Models MolecularRNA methylationRNA-dependent RNA polymeraseRNA ArchaealBiologyMethylationBiochemistryRNA TransferDrug Resistance BacterialRNA Processing Post-TranscriptionalMolecular BiologyGeneticstRNA MethyltransferasesBinding SitesIntronRNANon-coding RNARNA BacterialRNA silencingRNA RibosomalRNA editingProtein BiosynthesisBiocatalysisNucleic Acid ConformationRNARNA ViralSmall nuclear RNAWIREs RNA
researchProduct

Pseudouridine: Still mysterious, but never a fake (uridine)!

2014

International audience; Pseudouridine () is the most abundant of >150 nucleoside modifications in RNA. Although was discovered as the first modified nucleoside more than half a century ago, neither the enzymatic mechanism of its formation, nor the function of this modification are fully elucidated. We present the consistent picture of synthases, their substrates and their substrate positions in model organisms of all domains of life as it has emerged to date and point out the challenges that remain concerning higher eukaryotes and the elucidation of the enzymatic mechanism.

RNA MitochondrialSaccharomyces cerevisiaeReviewBiologyModified nucleosidesPseudouridine03 medical and health scienceschemistry.chemical_compound0302 clinical medicineRNA modificationEscherichia coliHumansRNA Processing Post-Transcriptional[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Intramolecular TransferasesUridineMolecular Biology030304 developmental biology0303 health sciencesRNACell BiologyRNA Transfer Amino Acid-SpecificRibonucleoproteins Small NuclearUridineIsoenzymeschemistryBiochemistryRNA Ribosomal030220 oncology & carcinogenesisTransfer RNANucleic Acid ConformationRNARibosomesNucleosidePseudouridineSmall nuclear RNA[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyRNA Guide Kinetoplastida
researchProduct

Selective Stimulation of Hepatitis C Virus and Pestivirus NS5B RNA Polymerase Activity by GTP

1999

NS5B of the hepatitis C virus is an RNA template-dependent RNA polymerase and therefore the key player of the viral replicase complex. Using a highly purified enzyme expressed with recombinant baculoviruses in insect cells, we demonstrate a stimulation of RNA synthesis up to 2 orders of magnitude by high concentrations of GTP but not with ATP, CTP, UTP, GDP, or GMP. Enhancement of RNA synthesis was found with various heteropolymeric RNA templates, with poly(C)-oligo(G)12 but not with poly(A)-oligo(U)12. Several amino acid substitutions in polymerase motifs B, C, and D previously shown to be crucial for RdRp activity were tested for GTP stimulation of RNA synthesis. Most of these mutations, …

GTP'biologyvirusesRNA-dependent RNA polymeraseRNADNA-Directed RNA PolymerasesHepacivirusCell BiologyViral Nonstructural ProteinsRNA-Dependent RNA PolymeraseBiochemistryMolecular biologyPost-transcriptional modificationEnzyme Activationchemistry.chemical_compoundchemistryRNA polymerasePestivirusbiology.proteinRNA polymerase IRNA ViralGuanosine TriphosphateMolecular BiologyPolymeraseSmall nuclear RNAJournal of Biological Chemistry
researchProduct

The 18S ribosomal RNA m 6 A methyltransferase Mettl5 is required for normal walking behavior in Drosophila

2020

RNA modifications have recently emerged as an important layer of gene regulation. N6-methyladenosine (m6A) is the most prominent modification on eukaryotic messenger RNA and has also been found on noncoding RNA, including ribosomal and small nuclear RNA. Recently, several m6A methyltransferases were identified, uncovering the specificity of m6A deposition by structurally distinct enzymes. In order to discover additional m6A enzymes, we performed an RNAi screen to deplete annotated orthologs of human methyltransferase-like proteins (METTLs) in Drosophila cells and identified CG9666, the ortholog of human METTL5. We show that CG9666 is required for specific deposition of m6A on 18S ribosomal …

AdenosineBiochimiem 6 AMettl5WalkingBiologyBiochemistryRibosome18S ribosomal RNA03 medical and health sciences0302 clinical medicineGene expressionRNA Ribosomal 18SGeneticsAnimalsHumansRNA methyltransferase[SDV.BDD]Life Sciences [q-bio]/Development BiologyMolecular Biology030304 developmental biologyBehavior0303 health sciencesMessenger RNAbehaviorBiologie moléculaireRNA[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyMethyltransferasesm6ARibosomal RNANon-coding RNARibosome[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM]3. Good healthCell biologyribosomeRNA RibosomalDrosophilaBiologie030217 neurology & neurosurgerySmall nuclear RNAReportsEMBO reports
researchProduct

Evidence for involvement of a nuclear envelope-associated RNA helicase activity in nucleocytoplasmic RNA transport

1990

It seems well established that translocation of at least some mRNAs through the nuclear pore is (1) an energy-dependent process, and (2) dependent on the presence of the poly(A) segment attached to most mRNA species. We describe that RNA helicase (RNA duplex unwindase) activity is present in a nuclear envelope (NE) preparation, which also appears to be involved in nucleocytoplasmic RNA transport. This activity unwinds RNA: RNA hybrids. The helicase has a pH optimum of 7.5 and a temperature optimum of 30 degrees C. Applying the sealed NE vesicle system, it was shown that duplex RNA species are readily released from the vesicles in an unidirectional manner, in contrast to single-stranded RNA,…

PhysiologyClinical BiochemistryRNARNA-dependent RNA polymeraseRNA transportCell BiologyBiologyNon-coding RNARNA Helicase ABiochemistryRNA polymerase IBiophysicsDegradosomeSmall nuclear RNAJournal of Cellular Physiology
researchProduct

Rtp1p Is a Karyopherin-Like Protein Required for RNA Polymerase II Biogenesis

2013

The assembly and nuclear transport of RNA polymerase II (RNA pol II) are processes that require the participation of many auxiliary factors. In a yeast genetic screen, we identified a previously uncharacterized gene, YMR185w (renamed RTP1), which encodes a protein required for the nuclear import of RNA pol II. Using protein affinity purification coupled to mass spectrometry, we identified interactions between Rtp1p and members of the R2TP complex. Rtp1p also interacts, to a different extent, with several RNA pol II subunits. The pattern of interactions is compatible with a role for Rtp1p as an assembly factor that participates in the formation of the Rpb2/Rpb3 subassembly complex and its bi…

Saccharomyces cerevisiae ProteinsActive Transport Cell NucleusRNA polymerase IISaccharomyces cerevisiaeKaryopherinsBiologyGene Expression Regulation FungalTranscriptional regulationRNA polymerase IProtein Interaction MapsMolecular BiologyRNA polymerase II holoenzymeR2TP complexGeneticsNuclear cap-binding protein complexArticlesCell BiologyPhosphoproteinsUp-RegulationCell biologyNuclear Pore Complex Proteinsbiology.proteinRNA Polymerase IITranscription factor II DCarrier ProteinsGene DeletionSmall nuclear RNATranscription Factors
researchProduct

Whole-blood transcriptome profiling reveals signatures of metformin and its therapeutic response

2020

Metformin, a biguanide agent, is the first-line treatment for type 2 diabetes mellitus due to its glucose-lowering effect. Despite its wide application in the treatment of multiple health conditions, the glycemic response to metformin is highly variable, emphasizing the need for reliable biomarkers. We chose the RNA-Seq-based comparative transcriptomics approach to evaluate the systemic effect of metformin and highlight potential predictive biomarkers of metformin response in drug-naive volunteers with type 2 diabetes in vivo. The longitudinal blood-derived transcriptome analysis revealed metformin-induced differential expression of novel and previously described genes involved in cholester…

0301 basic medicineMaleendocrine system diseasesMolecular biologyGene ExpressionType 2 diabetesPharmacologyBiochemistryTranscriptome0302 clinical medicineEndocrinologyMedical ConditionsSequencing techniquesGastrointestinal CancersBreast TumorsMedicine and Health SciencesHomeostasisEnergy-Producing OrganellesWhole bloodMultidisciplinarySmall nuclear RNABiguanideQRRNA sequencingGenomicsMiddle AgedMetforminMetforminMitochondriaType 2 DiabetesNucleic acidsCholesterolSmall nucleolar RNAOncology030220 oncology & carcinogenesisMedicineFemaleCellular Structures and OrganellesTranscriptome Analysismedicine.drugResearch Articlemedicine.drug_classEndocrine DisordersScienceGastroenterology and HepatologyBioenergetics03 medical and health sciencesBreast CancermedicineGeneticsDiabetes MellitusHumansNon-coding RNAGlycemicAgedbusiness.industryGene Expression ProfilingType 2 Diabetes Mellitusnutritional and metabolic diseasesBiology and Life SciencesComputational BiologyCancers and NeoplasmsCell Biologymedicine.diseaseGenome AnalysisGene regulationGene expression profilingResearch and analysis methods030104 developmental biologyMolecular biology techniquesMetabolic DisordersRNAbusinessBlood Chemical AnalysisPLoS ONE
researchProduct

Interaction of 68–kDa TAR RNA-binding protein and other cellular proteins with rpion protein-RNA stem-loop

1995

The RNA stem-loop structure of the trans-activating region TAR sequence of human immunodeficiency virus-1 mRNA is the binding site for a number of host cell proteins. A virtually identical set of proteins from HeLa nuclear extracts was found to bind to the predicted RNA hairpin element of prion protein (PrP) mRNA, as demonstrated in UV cross-linking/RNase protection and Northwestern assays. We show that the cellular TAR loop-binding protein, p68, is among those proteins which associate with PrP RNA. Competition experiments with various TAR RNA mutants revealed that binding of partially purified p68 to PrP RNA stem-loop occurs sequence-specifically. The 100-kDa 2-5A synthetase which is invol…

PrionsBlotting WesternMolecular Sequence DataRNA-dependent RNA polymeraseReceptors Cell SurfaceRNA-binding proteinBiologyBinding CompetitiveCellular and Molecular NeuroscienceVirology2'5'-Oligoadenylate SynthetaseHumansLymphocytesHIV Long Terminal RepeatBase SequenceRNA-Binding ProteinsRNABlotting NorthernNon-coding RNAMolecular biologyRNA silencingNeurologyMutagenesisRNA editingeIF4ANucleic Acid ConformationNeurology (clinical)Small nuclear RNAHeLa CellsJournal of Neurovirology
researchProduct